

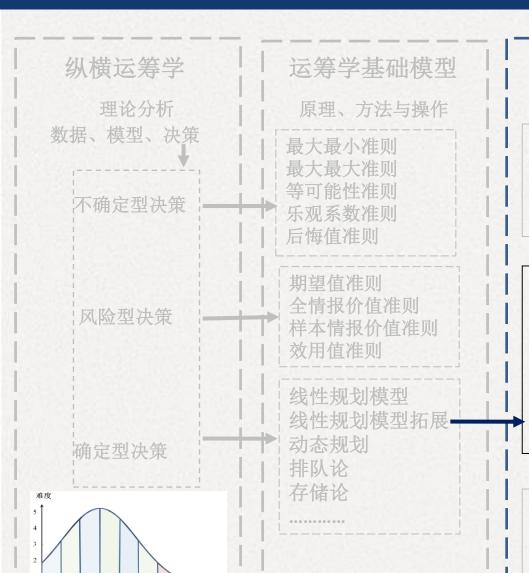
第七讲 目标规划模型

宗胜亮

zongshl@lzu.edu.cn

Data
Models & Decisions

课程知识结构导航



运筹学模型的应用拓展

原理、方法与操作

价值系数变化影响 常数项变化影响 百分之一百法则 相差值分析

生产安排问题 排班问题 套裁下料问题 连续投资问题

产销平衡运输模型 产大于销运输模型 销大于产运输模型 条件产销不平衡模型 转运问题模型

最短路模型 最小费用流模型 最大流模型 最小支撑树模型

运输问题模型

目标规划模型

网络优化模型

有优先级目标规划加权目标规划

问题的提出

- 》线性规划只研究在满足一定条件下,单一目标函数取得最优解,而现实中,经常遇到多目标决策问题,如拟订生产计划时,不仅考虑总产值,同时要考虑利润,产品质量和设备利用率等。
- 发性规划致力于某个目标函数的最优解,这个最优解若是超过了实际的需要,很可能是以过分地消耗了约束条件中的某些资源作为代价。

问题的提出

- 发性规划把各个约束条件的重要性不分主次地等同看待, 不符合实际情况。
- 一求解线性规划问题,首先要求约束条件必须相容,如果约束条件中,由于人力,设备等资源条件的限制,使约束条件之间出现了矛盾,就得不到问题的可行解,但生产还得继续进行。
- 为了弥补线性规划问题的局限性,解决有限资源和计划指标之间的矛盾,在线性规划基础上,建立目标规划方法,从而使一些线性规划无法解决的问题得到满意的解答。

例7.1 一位投资商有一笔资金准备购买股票。资金总额为10万元,目前可选的股票有A和B两种(可以同时投资于两只股票)。其价格以及年收益率和风险系数如下表所示。

股票	价格 (元)	年收益 (元)	风险系数
A	25	3	0.5
В	50	4.5	0.3

假设这两只股票可以以元为单位购买, 试求一种投资方案, 使得一年的总投资风险值不高于800(指数), 且投资收益不低 于1.2万元。

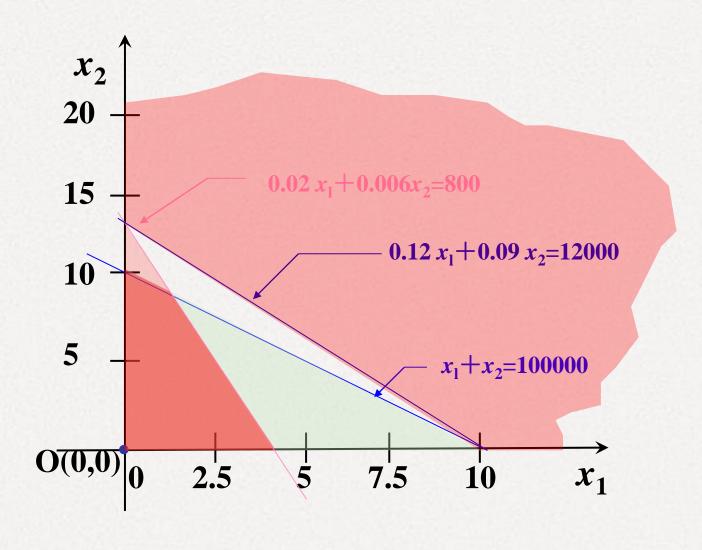
每种股票的年收益率、年风险率、风险指数以及收益。

股票	年收益率	年风险率	全投风险 (指数)	全投收益 (元)
A	12%	2%	2000	12000
В	9%	0.6%	600	9000

设A,B两种股票的投资额分别为 x_1 和 x_2 ,可得约束条件如下:

$$x_1 + x_2 \le 100000$$
 (投资总额) $0.12 x_1 + 0.09 x_2 \ge 12000$ (总收益) $0.02 x_1 + 0.006x_2 \le 800$ (总风险) $x_1, x_2 \ge 0$

三个约束条件的图形关系



分析结论: 没有可行域, 即没有同时满足上迷三个约束

条件的 x_1 , x_2 。 因此, 无解!

理论分析

没有可行域,但还必须进行决策。

每个目标都必须考虑

多个目标

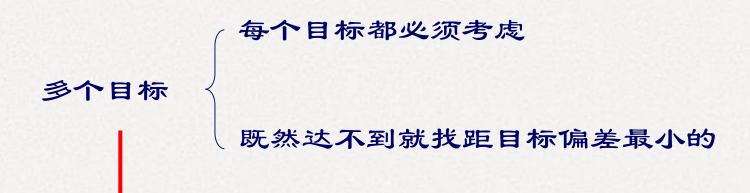
既然达不到就找距目标偏差最小的

目标规划

有具体的目标值但不一定是最优且未必能达到

仍是线性规划应用的拓展

理论分析



重要的目标尽量保证

次要的目标尽量满足

理论分析

每个目标都必须考虑

多个目标

既然达不到就找距目标的偏差最小

重要的目标尽量保证

分优先级或加权重

次要的目标尽量满足

决策方法

应用目标规划模型

引入偏差变量 d_i^+, d_i^-

其中, d_i^+ 表示在第i个约束的结果中高于目标的部分, d_i^- 表示在第i个约束的结果中低于目标的部分, $d_i^+ \ge 0$ 、 $d_i^- \ge 0$ (但两者都必定存在一个固定的关系:若 $d_i^+ > 0$ 必定有 $d_i^- = 0$; $d_i^- > 0$ 也必定有 $d_i^+ = 0$,两者不会同时大于0)。但其约束结果中等于目标时, d_i^+ 、 d_i^- 都同时等于0。

即约束条件: 实际值- $d_i^+ + d_i^- =$ 常数项(目标值)

决策方法

 d_i

目标

目标

实际值

决策方法

有优先级的目标规划模型

目标规划模型

加权目标规划模型

目标函数: $\min d_i^+$

或 min d_i

或 min $(d_i^+ + d_i^-)$

例7.1解析

在一般的投资活动中,都有争取收益最大化和风险最小化两个目标。

第一目标:降低风险

第二目标:增加收益

因此,对于该投资决策问题,就应该建立有两个优先级的目标规划模型。

> 确定决策变量

绝对变量

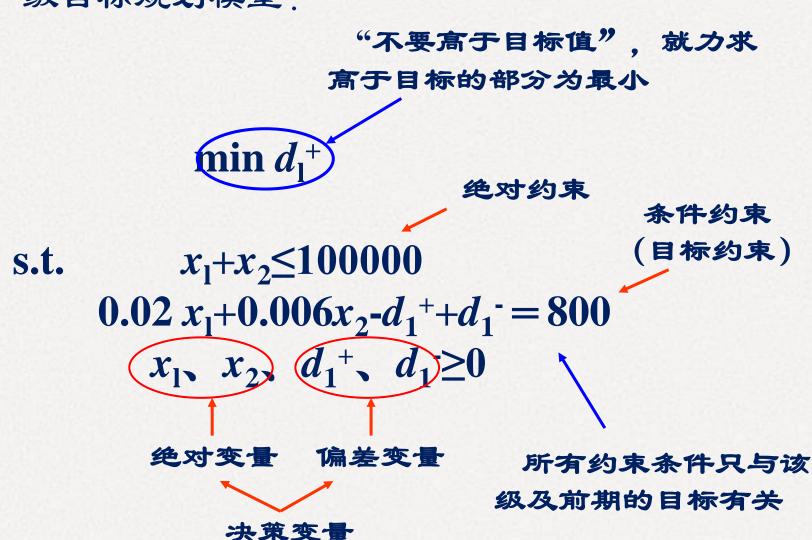
偏差变量

> 确定约束条件

绝对约束

目标约束

第一级目标规划模型:



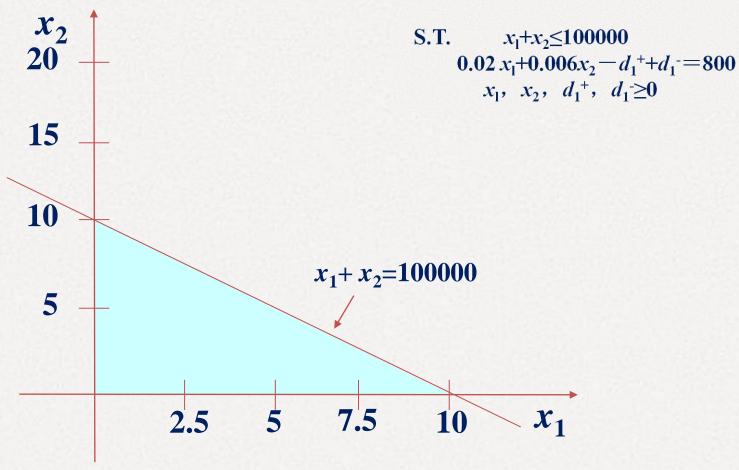
第二级目标规划模型:

min
$$d_2$$

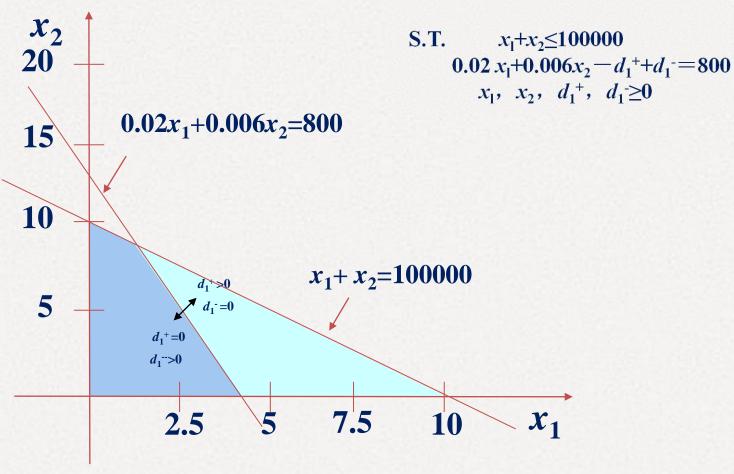
s.t.
$$x_1 + x_2 \le 100000$$

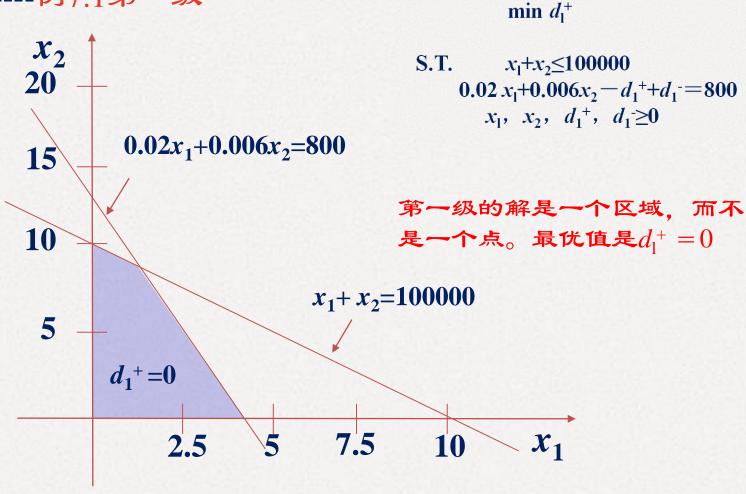
 $0.02 x_1 + 0.006 x_2 - d_1^+ + d_1^- = 800$
 $0.12 x_1 + 0.09 x_2 - d_2^+ + d_2^- = 12000$
增加第一级 d_1^+ 的结果
 $x_1, x_2, d_1^+, d_1^-, d_2^+, d_2 \ge 0$

由于目标规划中,绝对变量和偏差变量的性质不同,所以与一般线性规划模型相比,看起来相似,但 求解方法则完全不同。因此,仍用图解法来了解其中的不同。



min d_1^+





图解法----例7.1第二级

数学模型:

min
$$d_2$$

s. t.
$$x_1 + x_2 \le 100000$$

$$0.02 x_1 + 0.006x_2 - d_1^+ + d_1^- = 800$$

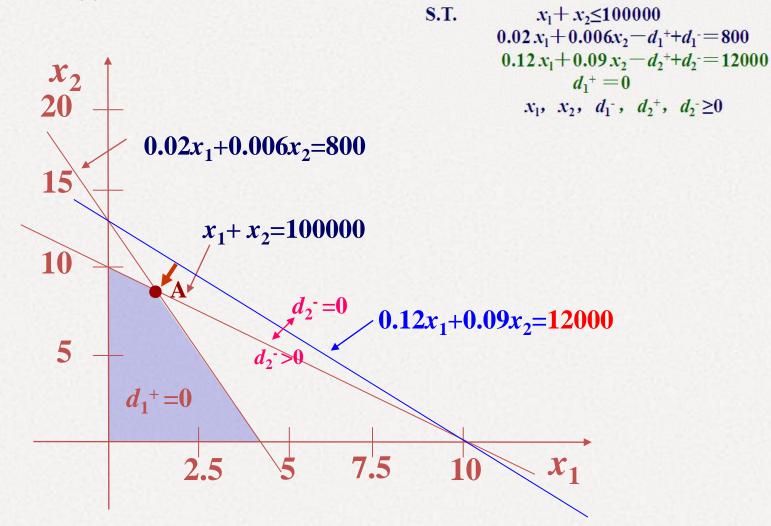
$$0.12 x_1 + 0.09 x_2 - d_2^+ + d_2^- = 12000$$

$$d_1^+ = 0$$

$$x_1, x_2, d_1^-, d_2^+, d_2^- \ge 0$$

 $\min d_2$

图解法-----例7.1第二级



图解法-----例7.1

最优解: A点的坐标是(14285.71, 85714.29)

最优值: 第一级 $d_1^+ = 0$

第二级 $d_2^- = 2751.43$

即其结果为:

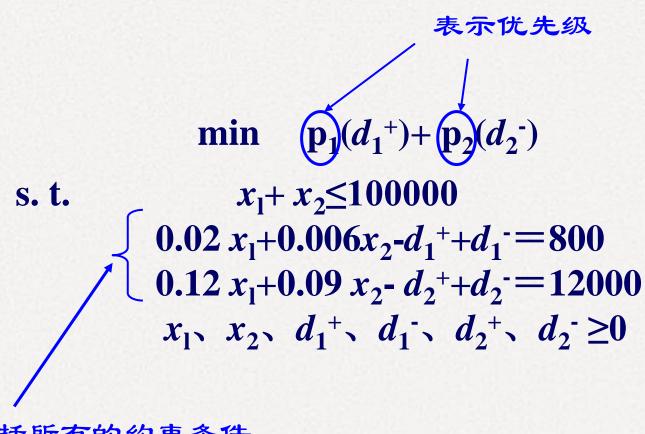
总风险为800; 总收益为0.12×14285.71+0.09×85714.29=9428.57<12000。还差2571.43没有达到第二个目标。

本案例中, 优先级高的目标实现了, 并付出了优先级低的目标没有实现的代价。

有优先级的目标规划模型的求解过程:

- > 分级确定解的可行域
- 对优先级高的目标求解,如果找不到能满足的目标解,则 寻找最接近该目标的解
- 对优先级次之的目标进行求解,但必须保证所有优先级高的目标不变
- ▶ 重复第3步,直至所有优先级目标都求解完

目标规划数学模型的标准形式——例7.1



包括所有的约束条件

用计算机程序求解时,由计算机进行不间断的分级 计算,同时给出分级决策结果。因而可以将目标规划数 学模型表述为标准形式。

一次获得各级的最终结果:

绝对	变量个数	τ: 2		į	云筹学	学模型	型求角	解系统	究	优	先级	目标规	[戈]
绝对	约束个数	t: 1	目标约	東个数:	2	优先级个	数: 2				求 解		ù
			偏差变量										
			d_1^{\dagger}	d_1	d+2	d-2		最优值					
	优先级	优先级1	1	w 1	4.2	W 2		0					
	1/4/4-2%	优先级2				1		2571.43					
		7676-7,42	0	0	0	2571.43		2011. 10					
			X1	X2	实际值	关系	常数项						
	绝对约束	约束1	1	1	100000	<	100000						
					实现值		目标值	正偏差	负偏差	平衡值	关系	目标值	
	目标约束	约束1	0.02	0.006	800		800	0	0	800	=	800	
		约束2	0.12	0.09	9428.57		12000	0	2571.43	12000	=	12000	
	į	 整数属性: _:	14285.7	85714.3 变量、2:] 0-1变量								
第1级结果	1	绝对变量	X1	X2			最优值	0					
			0	0									
		偏差变量	d_1	$\bar{d_1}$	d [*] ₂	d⁻₂							
			0	800	0	0							
第2级结果	[绝对变量	X1 14285.7	X2 85714.3			最优值	2571.43					
		偏差变量	d_1	\bar{d}_1	d_2	d⁻₂							
			0	0	0	2571.43							

有优先级目标规划模型的特征:

- 所有决策模型都是最小化目标,且都只包含偏差变量,不包含绝对变量
- 》约束条件中可以有绝对约束和条件约束,但条件约束都是 "-"
- 》需要分级建模型、分级求解,每一级都只解决一组目标的最小值问题,上级目标函数值,要作为下级的约束条件来使用(每级都是保证在前期决策结果的前提下进行再决策)
- 》目标规划的模型可分为标准型和分级型,但具体求解只能 按分级型求解

模型转换:将简单有优先权目标规划模型转换为分级的有优 失权目标规划模型

min
$$f=P_1 d_1^+ + P_2 (d_2^+ + d_3^+ + d_4^+) + P_3 (d_5^- + d_6^-)$$

s. t. $500 x_1 + 500 x_2 + 1000 x_3 + d_1^- - d_1^+ = 9000$
 $x_1 + d_2^- - d_2^+ = 3$
 $-x_1 + x_2 + d_3^- - d_3^+ = 3$
 $-x_2 + x_3 + d_4^- - d_4^+ = 0$
 $x_2 + d_5^- - d_5^+ = 4.5$
 $x_3 + d_6^- - d_6^+ = 4.5$
 $x_1, x_2, x_3 \ge 0, d_1^+, d_1^- \ge 0, i = 1, 2, ..., 6.$

模型转换:将简单有优先权目标规划模型转换为分级的有份。

先权目标规划模型

S.T.
$$500 x_1 + 500 x_2 + 1000 x_3 + d_1^- - d_1^+ = 9000$$

 $x_1 + d_2^- - d_2^+ = 3$
 $-x_1 + x_2 + d_3^- - d_3^+ = 3$
 $-x_2 + x_3 + d_4^- - d_4^+ = 0$
 $\begin{bmatrix} & & & & & & \\ & & & \\ & & & \end{bmatrix} \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix} \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix} \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix} \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix} \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix} \begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \end{bmatrix} \begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \end{bmatrix} \begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \end{bmatrix} \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix} \begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \end{bmatrix} \begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \end{bmatrix} \begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \end{bmatrix} \begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \end{bmatrix} \begin{bmatrix} & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \end{bmatrix} \begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{bmatrix} \begin{bmatrix} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{bmatrix} \begin{bmatrix} & & & \\ & & \\ & & \\ & & \\ & & \\ \end{bmatrix} \begin{bmatrix} & & & \\ & & \\ & & \\ & & \\ & & \\ \end{bmatrix} \begin{bmatrix} & & & \\ & & \\ & & \\ & & \\ \end{bmatrix} \begin{bmatrix} & & & \\ & & \\ & & \\ & & \\ \end{bmatrix} \begin{bmatrix} & & & \\ & & \\ & & \\ & & \\ \end{bmatrix} \begin{bmatrix} & & & \\ & & \\ & & \\ & & \\ \end{bmatrix} \begin{bmatrix} & & & \\ & & \\ \end{bmatrix} \begin{bmatrix} &$

Min
$$f = P_1 d_1^{++} + P_2 (d_2^{++} + d_3^{++} + d_4^{++}) + P_3 (d_5^{-+} + d_6^{-+})$$

S.T. $500 x_1 + 500 x_2 + 1000 x_3 + d_1^{--} - d_1^{+-} = 9000$
 $x_1 + d_2^{--} - d_2^{+-} = 3$
 $-x_1 + x_2 + d_3^{--} - d_3^{+-} = 3$
 $-x_2 + x_3 + d_4^{--} - d_4^{+-} = 0$
 $x_2 + d_5^{--} - d_5^{+-} = 4.5$
 $x_3 + d_6^{--} - d_6^{+-} = 4.5$
 $x_1, x_2, x_3 \ge 0, d_i^{+-}, d_i^{--} \ge 0, i = 1, 2, ..., 6$.

第一级:

Min
$$f = P_1 d_1^+ + P_2 (d_2^+ + d_3^+ + d_4^+) + P_3 (d_5^- + d_6^-)$$

S.T. $500 x_1 + 500 x_2 + 1000 x_3 + d_1^- - d_1^+ = 9000$
 $x_1 + d_2^- - d_2^+ = 3$
 $-x_1 + x_2 + d_3^- - d_3^+ = 3$
 $-x_2 + x_3 + d_4^- - d_4^+ = 0$
 $x_2 + d_5^- - d_5^+ = 4.5$
 $x_3 + d_6^- - d_6^+ = 4.5$
 $x_1, x_2, x_3 \ge 0, d_1^+, d_1^- \ge 0, i = 1, 2, \dots, 6$

第二级:

 $-x_2+x_3+d_4-d_4=0$

增加第一级d₁+的最优值为约束条件

$$x_1, x_2, x_3 \ge 0, d_i^+, d_i^- \ge 0, i=1, 2, 3, 4$$

Min
$$f = P_1 d_1^+ + P_2 (d_2^+ + d_3^+ + d_4^+) + P_3 (d_5^- + d_6^-)$$

S.T. $500 x_1 + 500 x_2 + 1000 x_3 + d_1^- - d_1^+ = 9000$
 $x_1 + d_2^- - d_2^+ = 3$
 $-x_1 + x_2 + d_3^- - d_3^+ = 3$
 $-x_2 + x_3 + d_4^- - d_4^+ = 0$
 $x_2 + d_5^- - d_5^+ = 4.5$
 $x_3 + d_6^- - d_6^+ = 4.5$
 $x_1, x_2, x_3 \ge 0, d_4^+, d_1^- \ge 0, i = 1, 2, \dots, 6$

$$d_1^{+}=4$$

课堂练习1

第三级

Min
$$(d_5 + d_6)$$

S.T.
$$500 x_1 + 500 x_2 + 1000 x_3 + d_1 - d_1 = 9000$$

$$x_1 + d_2 - d_2 = 3$$

$$-x_1+x_2+d_3-d_3+=3$$

$$-x_2+x_3+d_4$$
 $-d_4$

$$x_2 + d_5^- - d_5^+ = 4.5$$

$$x_3 + d_6^- - d_6^+ = 4.5$$

增加第一级d.+的最优值为约束条件

$$x_1, x_2, x_3 \ge 0, d_1, d_i \ge 0, i = 1, 2, ..., 6$$

Min
$$f = P_1 d_1^+ + P_2 (d_2^+ + d_3^+ + d_4^+) + P_3 (d_5^- + d_6^-)$$

S.T. $500 x_1 + 500 x_2 + 1000 x_3 + d_1^- - d_1^+ = 9000$
 $x_1 + d_2^- - d_2^+ = 3$
 $-x_1 + x_2 + d_3^- - d_3^+ = 3$
 $-x_2 + x_3 + d_4^- - d_4^+ = 0$
 $x_2 + d_5^- - d_5^+ = 4.5$
 $x_3 + d_6^- - d_6^+ = 4.5$
 $x_1, x_2, x_3 \ge 0, d_1^+, d_1^- \ge 0, i = 1, 2,6$

$$d_2^{+}=3$$

$$d_3^{+}=4$$

$$d_4^{+}=2$$

例7.2 某公司近期准备投放两个新产品A、B, 为保证一次投放成功, 公司决定在大量投放前先做一次从生产到销售一体化的小批量试点。已知生产一件产品A需要成本200元, 生产一件产品B需要成本300元。A, B产品的单位利润分别为250元和125元。

企业决策层决定:

该批试点的首要任务是保证质量和资金投入,要求总耗费资金不能低于60000元,但也不能超过68000元的极限;

次要任务是要求总的利润不低于70000元;

在前两个任务的前提下,为了保证库存需要,要求产品A和B的总产量分别不低于200件和120件。由于B产品比A产品更重要, 再假设B完成最低产量120件的重要性是A完成200件重要性的2倍。

试做该试点安排的最优决策。

按决策层的要求,该决策问题分三个优先级: P_1 , P_2 , P_3 , 从高至低来表示

对应P1有两个目标: 总耗费资金不能低于60000元, 也不能超过

68000元;

对应P2有一个目标:总利润不低于70000元;

对应P3有两个目标:产品A和B的总产量分别不低于200和120件。

这是三个优先级、五个目标的规划模型

一、确定决策变量

1、绝对变量

设: x₁, x₂分别为安排产品A和B的产量

2、偏差变量

对应 P_1 有两个目标:

分别设 d_1^+ 、 d_1^- 为投入资金高于和低于68000元的部分设 d_2^+ 、 d_2^- 为投入资金高于和低于60000元的部分

对应P,有一个目标:

设 d_3^+ 、 d_3^- 为总利润超过和低于70000元的部分

对应 P_3 有两个目标:

设 d_4^+ 、 d_4^- 为产品A的总产量高于和低于200件的部分设 d_5^+ 、 d_5^- 为产品B的总产量高于和低于120件的部分

二、确定目标函数

1、第一优先级目标函数

min
$$p_1(d_1^+)+p_1(d_2^-)$$

2、第二优先级目标函数

min
$$p_2(d_3^-)$$

3、第三优先级目标函数

min
$$p_3(d_4^-) + p_3(2d_5^-)$$

三、确定约束条件

本问题没有绝对约束, 只有条件约束

1、对于第一优先级

$$200 x_1 + 300 x_2 - d_1^+ + d_1^- = 68000$$
 (总资金不超过68000元)

$$200 x_1 + 300x_2 - d_2^+ + d_2^- = 60000$$
 (总资金不少于60000元)

2、对于第二优先级

$$250 x_1 + 125 x_2 - d_3^+ + d_3^- = 70000$$
 (总利润不低于 70000 元)

3、对于第三优先级

$$x_1 - d_4^+ + d_4^- = 200$$
 (A产量不低于200件)

$$x_2 - d_5^+ + d_5^- = 120$$
 (B产量不低于120件)

得目标规划数学模型(标准型)

min
$$f=p_1(d_1^++d_2^-)+p_2(d_3^-)+p_3(d_4^-+2d_5^-)$$

s. t. $200 x_1+300x_2-d_1^++d_1^-=68000$
 $200 x_1+300x_2-d_2^++d_2^-=60000$
 $250 x_1+125x_2-d_3^++d_3^-=70000$
 $x_1-d_4^++d_4^-=200$
 $x_2-d_5^++d_5^-=120$
 x_1 , x_2 , d_i^+ , $d_i^-\geq 0$, $i=1, 2, 3, 4, 5$

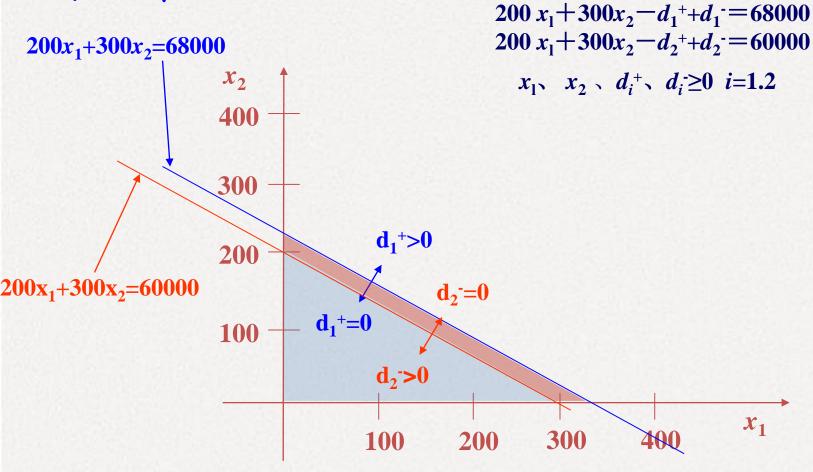
若用计算机求解, 直接录入模型即可

min

 $(d_1^+ + d_2^-)$

图解模型

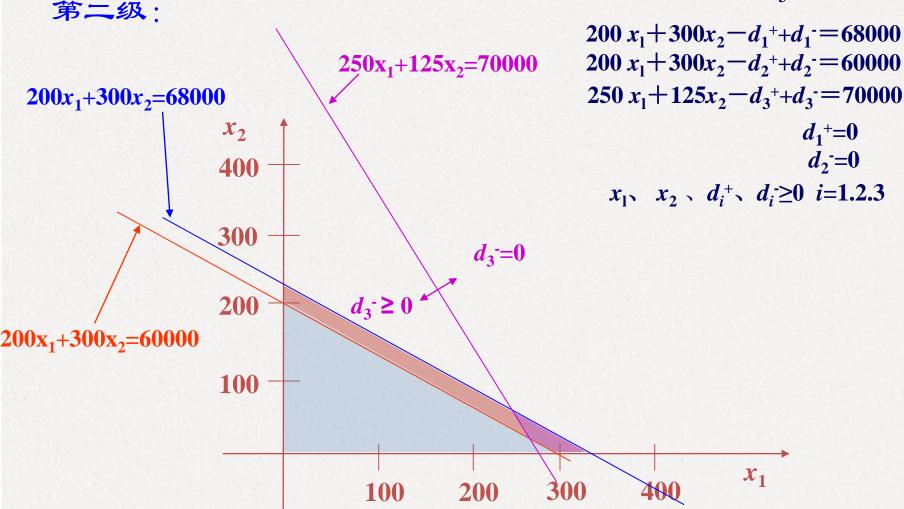
第一级:



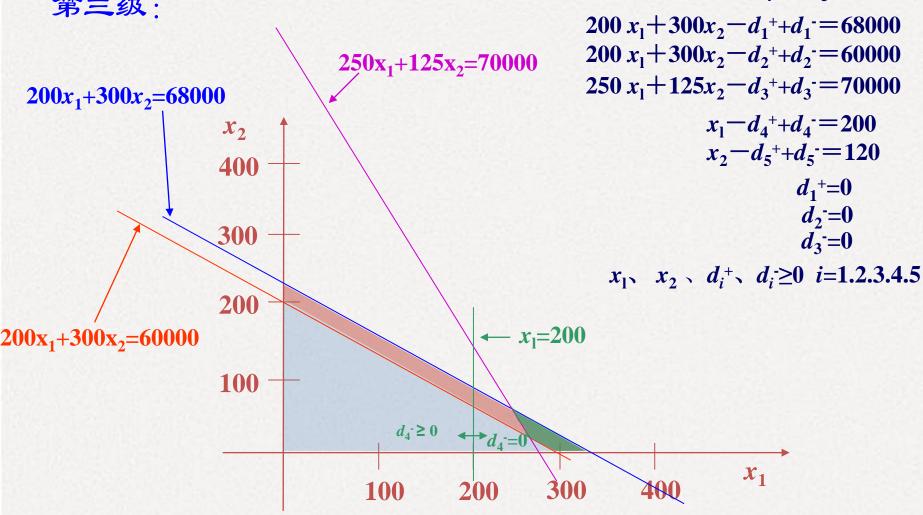
min d_3

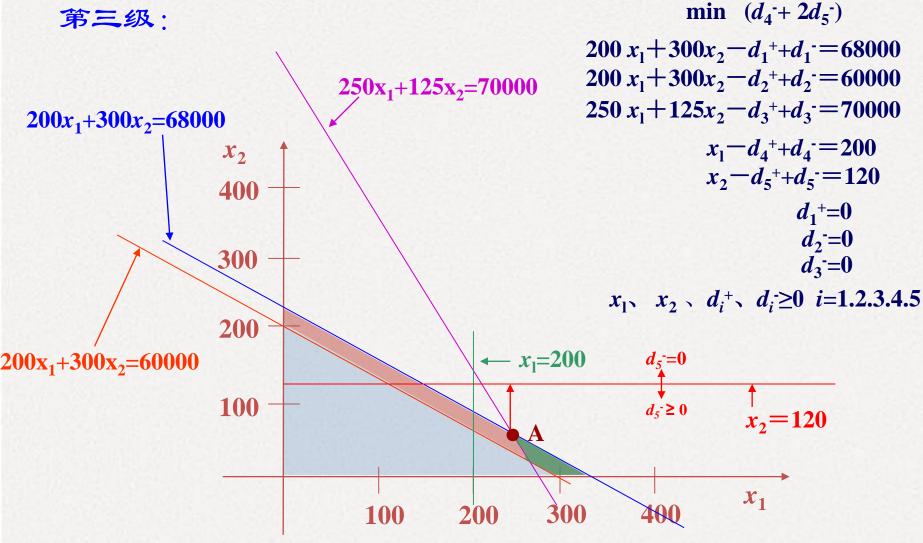
 $d_1^{+}=0$

 $d_2 = 0$



min $(d_4 + 2d_5)$





求解结果:

最优解:

$$x_1 = 250, x_2 = 60$$

 $d_1^+ = 0$
 $d_2^- = 0$
 $d_3^- = 0$
 $d_4^- = 0$
 $d_5^- = 60$

最优目标函数值

第一级: $d_1^+ + d_2^- = 0$

第二级: $d_3 = 0$

第三级: $d_4^-+2 d_5^-=120$

即:安排产品A250件,产品B60件,投入资金68000元, 实现利润70000元,A产品的件数比200件多50件,B产品的件数比120少60件,没有达到全部的目标,但实现了距全部目标最近的预期。

问题讨论1

该决策结果中,A产品的产量实现不低于最低值的目标, 而B产品没有实现。怎么理解已考虑的B产品实现目标重要性的要求。

加权目标规划是另一种解决多目标决策问题的方法, 其基本方法是通过量化的方法分配给每个目标偏离严重程度 一个罚数权重,然后建立总的目标函数,该目标函数表示的 目标是要使每个目标函数与各自目标的加权偏差之和最小。 此时,除具有两种性质不同的决策变量外,所有单个的目标 函数及约束条件都符合线性规划的要求,因此整个问题就可 以表述为一个单目标规划模型。

如在例7.2中对总耗费资金超过68000元或低于60000元的 每元罚数权重定为7;总利润低于70000元时,每元的罚数权 重定为5;产品A产量低于200件时每件罚数权重定为2,而产 品B产量低于120件时每件罚数权重定为4,则其目标变为

min
$$f=7d_1^++7d_2^-+5d_3^-+2d_4^-+4d_5^-$$

约束条件与有优先级目标规划一样。

得加权目标规划数学模型

模型求解

绝对变量个数: 2

运筹学模型求解系统-----加权目标规划问题

绝对约束个数: 0

目标约束个数: 5

求 解

返 回

偏差变量

	11974-24-4									
	d_{1}^{T}	\overline{d}_1	d+2	d-2	d+3	d-3	d+4	d-4	d+5	d-5
优先级 优先级1	7			7		LЭ		2		4
	0	0	8000	0	0	0	50	0	0	60

<mark>最优值</mark> 240

				实现值	目标值	正偏差	负偏差	平衡值	关系	目标值
目标约束	约束1	200	300	68000	68000	0	0	68000	Ш	68000
	约束2	200	300	68000	60000	8000	0	60000	Ш	60000
	约束3	250	125	70000	70000	0	0	70000	Ш	70000
	约束4	1		250	200	50	0	200	Ш	200
	约束5		1	60	120	0	60	120		120

整数属性:

250 60

1. 整数变量、2. 0-1变量

₹策结果.	绝对变量	X1 250	X2 60			最优值	240				
	偏差变量	d_1	d 1	d ⁺ 2	d⁻₂	d ⁺ ₃	d⁻₃	d_4	d_4	d ⁺ 5	d⁻₅
		0	0	8000	0	0	0	50	0	0	60

计算机程序求解结果

$$x_1 = 250$$
, $x_2 = 60$
 $d_1^+ = 0$, $d_1^- = 0$, $d_2^+ = 0$, $d_2^- = 8000$
 $d_3^+ = 0$, $d_3^- = 0$
 $d_4^+ = 50$, $d_4^- = 0$, $d_5^+ = 0$, $d_5^- = 60$

目标函数为
$$d_4$$
+2 d_5 =120

与有优先权模型结果一样

问题讨论2

目标规划问题中两种不同性质规划模型 (有优先权目标规划模型和加权目标规划模型) 决策的异同点。

线性规划与目标规划的比较

	线性规划LP	目标规划GP				
日本系统	min, max	min, 偏差变量				
目标函数	系数可正负	系数≥0				
变量	x_i, x_s, x_a	x_i, x_s, x_a, d				
约束条件	系统约束	目标约束				
	(绝对约束)	系统约束				
解	最优	满意				

课堂练习2

某企业生产两种化学粘合剂A和B。这两种粘合剂的强度不同, 生产1升A需要20分钟,生产1升B需要25分钟。加工两种粘合剂所 用的原料都为树脂D,1升树脂D可以加工1升A或者1升B。树脂D的 保质期2周,已知树脂D的库存为300升。并且该企业每周正常工作 5天,每天8小时。该企业期望达到以下目标:

首要任务:保持工厂满负荷运转;同时加班时间控制在20小时以内;

次要任务: 至少生产110升A; 同时至少生产120升B;

最后, 考虑使用完所有的树脂D。

设前两个优先级对应的两个目标的重要程度相同。

请建立相应的目标规划模型, 并用图解法求解。

本章小结

重点内容:

- 1. 用图解法求解有优先级目标规划模型
- 2. 简单有优先权目标规划模型转换为分级的有优先权目标规划模型

THE END, Thanks!